DNA strand transfer reactions catalyzed by vaccinia topoisomerase: hydrolysis and glycerololysis of the covalent protein-DNA intermediate.

نویسندگان

  • B O Petersen
  • S Shuman
چکیده

Vaccinia topoisomerase forms a covalent protein-DNA intermediate at sites containing the sequence 5'-CCCTT. The T nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that the enzyme catalyzes hydrolysis of the covalent intermediate, resulting in formation of a 3'-phosphate-terminated DNA cleavage product. The hydrolysis reaction is pH-dependent (optimum pH = 9.5) and is slower, by a factor of 10(-5), than the rate of topoisomerase-catalyzed strand transfer to a 5'-OH terminated DNA acceptor strand. Mutants of vaccinia topoisomerase containing serine or threonine in lieu of the active site Tyr-274 form no detectable covalent intermediate and catalyze no detectable DNA hydrolysis. This suggests that hydrolysis occurs subsequent to formation of the covalent protein-DNA adduct and not via direct attack by water on DNA. Vaccinia topoisomerase also catalyzes glycerololysis of the covalent intermediate. The rate of glycerololysis is proportional to glycerol concentration and is optimal at pH 9.5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase

BACKGROUND Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essentia...

متن کامل

Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease.

Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site...

متن کامل

Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I.

Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme conce...

متن کامل

Site-specific interaction of vaccinia virus topoisomerase I with duplex DNA. Minimal DNA substrate for strand cleavage in vitro.

Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being ...

متن کامل

Requirements for noncovalent binding of vaccinia topoisomerase I to duplex DNA.

Vaccinia DNA topoisomerase binds duplex DNA and forms a covalent adduct at sites containing a conserved sequence element 5'(C/T)CCTT decreases in the scissile strand. Distinctive aspects of noncovalent versus covalent interaction emerge from analysis of the binding properties of Topo(Phe-274), a mutated protein which is unable to cleave DNA, but which binds DNA noncovalently. Whereas DNA cleava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 1997